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Abstract The crown-of-thorns starfish (COTS), Acan-

thaster cf. solaris, is one of the main contributors to

declines in coral cover on the Great Barrier Reef (GBR)

and remains one of the major acute disturbances on coral

reefs throughout much of the Indo-Pacific. Extensive con-

trol programs on the GBR involve manual culling of COTS

in the field, and research is needed to inform these man-

agement efforts. Data from the Great Barrier Reef Marine

Park Authority’s (GBRMPA) COTS control program pro-

vide near-real-time CPUE (Catch-Per-Unit-Effort, COTS

culled per minute) data ideal for operational decision-

making but these must be converted to density estimates

before they can be related to ecological status of reefs or

incorporated into ecological models. We developed con-

versions between common COTS field survey methods (i.e.

manta tow, SCUBA transect searches) and COTS control

program CPUE data using estimates of sightability and

detectability. We used a population model and COTS size-

structure data from COTS control program culling efforts

to estimate that, on average, only 19% of 1-yr-old COTS

(1–15 cm) are available to be culled. Finally, we developed

a CPUE-COTS density relationship to estimate the

threshold levels of COTS that prevent net growth of hard

corals. Culling programs should therefore aim to achieve

CPUEs below these ecological thresholds in order to

effectively promote coral growth and recovery. These

ecologically sustainable thresholds of COTS density varied

depending on hard coral cover. For example, for 35% fast-

growing coral cover, COTS culling needs to continue until

CPUE decreases to below 0.05 COTS/min (1 COTS per

20 min) in order to prevent coral decline, whereas if coral

cover is higher (80%), then a higher target threshold CPUE

of ca. 0.08 COTS/min (ca. 3 COTS per 40 min) may be

ecologically sustainable. These estimates underpin the

current pest management rules being implemented by the

GBRMPA in its COTS control program.
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Introduction

The crown-of-thorns starfish (COTS), Acanthaster cf.

solaris, is one of the main contributors to declines in coral

cover on Australia’s Great Barrier Reef (GBR) and remains

one of the major acute disturbances on coral reefs

throughout much of the Indo-Pacific (Pratchett 2010;

Fabricius et al. 2010; De’ath et al. 2012). COTS feed pri-

marily on scleractinian corals, and occur on reefs across the

tropical and sub-tropical Indo-Pacific (De’ath and Moran

1998). They are mostly rare (* 1 COTS�ha-1) but, under

certain circumstances, can undergo dramatic increases in

density (termed outbreaks; reaching[ 10,000 COTS�ha-1)
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& Éva E. Plagányi
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(Pratchett et al. 2017). Several hypotheses have been pro-

posed to explain the occurrence of these outbreaks (re-

viewed by Pratchett et al. 2017), including their life history

and phenomenal reproductive capacity (Babcock et al.

2016), and anthropogenic changes in environmental con-

ditions, namely the ‘terrestrial run-off hypothesis’ (Birke-

land 1982) and ‘predator removal hypothesis’, (Endean

1969). Although single factors (e.g., elevated nutrients

(Birkeland 1982)), or the life history traits of Acanthaster

alone (Birkeland 1989), could be a major driver under

some circumstances, most researchers concur that it is

unlikely that a single factor explains the diverse incidences

of crown-of-thorns outbreaks (Pratchett et al. 2017).

Impacts from climate change are also adding to the

degradation of coral reefs globally (Claar et al. 2018;

Hughes et al. 2018a, b) highlighting the urgent need to take

action to mitigate coral decline.

An ‘‘outbreak’’ state has been quantitatively defined

when a COTS population consumes corals at a rate which

is greater than the coral growth rate; thought to occur when

densities exceed 10 individuals ha-1 ([ 1000 COTS km-2)

(Birkeland and Lucas 1990; Moran and De’ath 1992;

Keesing and Lucas 1992). With the fourth recorded out-

break of COTS since the 19600s now occurring on the

GBR, control of COTS across reefs is regarded as one of

the most feasible on-ground actions managers can take to

prevent coral decline given that the other major causes of

decline are bleaching and cyclones (De’ath et al. 2012;

Fletcher et al. 2020; GBRMPA 2020).

Many methods have been used throughout the years and

across the Pacific to directly control COTS populations on a

local scale, such as manual removal and burial ashore, cut-

ting them up, and injections of toxic chemicals (Boström-

Einarsson and Rivera-Posada 2016). More recently COTS

culling methods have been revolutionised through the use of

a highly effective method involving a single small volume

injection of oxbile (Rivera-Posada et al. 2014). This dis-

covery paved the way for the current broad-scale COTS

control program on the Great Barrier Reef, because it

enabled divers to cull COTS more efficiently than before.

However, research was needed to support these control

efforts and inform the culling targets that would keep local

COTS populations below outbreaking threshold levels, in

order to achieve the management objective of mitigating

coral decline. A method was therefore needed to enable

comparison between culling rates (as an index of COTS

abundance) and outbreak thresholds.

Since 2012, considerable resources have been invested

by the Australian Government into a broad scale and

coordinated COTS control program, which is managed by

the Great Barrier Reef Marine Park Authority (GBRMPA).

The COTS control program aims to reduce the damaging

impacts of COTS on coral populations across individual

reefs in the Marine Park that are valuable for the resilience

of the ecosystem and the industries it supports (GBRMPA

2020). From 2012 to 2018, control effort was focused at the

spatial scale of individual sites (average size 20-30 ha) on

these high-value reefs. In 2018, control effort was expan-

ded to manage COTS populations across the entire extent

of high-value reefs accessible to divers (Fletcher et al.

2020). As part of this program, hard coral cover at high-

value reefs is estimated using Reef Health and Impact

Surveys (RHIS) in order to inform control efforts (Fletcher

et al. 2020).

In addition to local direct control of COTS through

culling, management also includes preventative long-term

approaches to mitigating outbreaks (GBRMPA 2020) such

as reducing nutrient inputs into the GBR lagoon (Fabricius

et al. 2010) and protecting the natural predators of COTS

using a zoning plan that limits fishing activities (Sweatman

2008; Vanhatalo et al. 2016).

The aim of this study was to explore important eco-

logical thresholds for COTS populations in relation to

potential for population growth and available food sources

(coral cover) (Babcock et al. 2014). Knowledge of these

thresholds is informing the management of COTS, which

involves a comprehensive surveillance and culling program

(Fletcher et al. 2020). To support management efforts, we

used a range of modelling methods as well as analyses of

available empirical data.

We use a multi-species model to estimate ecological

thresholds for COTS, being the levels above which COTS

densities are considered to be outbreaking and cause

declines in coral cover. Our analysis takes into account that

COTS are impacting a range of sites that have different

levels of coral cover and focuses on estimating the point at

which the net growth rate in coral cover is zero. In other

words, for a given coral cover level, we estimate the COTS

density where coral cover stays constant due to coral

growth being balanced by COTS consumption. Such den-

sities are desirable and correspond to being below the

outbreak threshold for the specified coral cover level. We

compare model results with empirical findings and utilise

COTS control program culling data for comparison.

The category of models we base our analyses on,

‘‘Models of Intermediate Complexity for Ecosystem

assessments’’ (MICE), has a tactical focus, including use as

ecosystem assessment tools (Plagányi et al. 2014a). MICE

are context- and question-driven and limit complexity by

restricting the focus to those components of the ecosystem

needed to address the main effects of the management

question under consideration. MICE estimate parameters

through fitting to data, use statistical diagnostic tools to

evaluate model performance and account for a broad range

of uncertainties. These models therefore address many of

the impediments to greater use of ecosystem models in
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strategic and particularly tactical decision-making for

marine resource management and conservation (Plagányi

et al. 2014a), and are increasingly being used to support

implementation of ecosystem-based management (Town-

send et al. 2019).

Our approach has several advantages compared with

analyses of empirical data alone: the model is dynamic

rather than needing to be based on static snapshots; the

model is continuous and hence can smoothly inform on

changes in coral cover as a function of COTS abundance;

the model is able to capture alternative coral-COTS com-

positions and link smooth multidimensional and nonlinear

changes between states to the relative change in the com-

position of the system; the model integrates available life

history information in a manner consistent with observed

data rather than attributing discrete coral cover measures to

COTS population abundance at a point in time; and the

model is able to rigorously estimate coral-COTS interaction

parameters and use these to derive plausible rates of change

in coral cover as a function of both COTS density and coral

cover. The approach used is therefore akin to that widely

used to provide science-based advice for exploited popula-

tions, using integrated modelling approaches incorporating

all available data, with explicit representation and estimation

of uncertainty (Maunder and Punt 2013). However, as per

any model or approach—empirical or otherwise—we

acknowledge the reliability of model outputs is strongly

contingent on the quality of data used as inputs.

As ecological thresholds underpin many of the COTS

monitoring and control activities, there is a need to be able

to use established relationships to convert between differ-

ent estimates of density, such as obtained from manta tow

survey and diver SCUBA-based transect estimates (cf

Fernandes et al. 1990). These estimates differ from the true

total abundance because of the difficulties in observing

very small cryptic COTS. However, models can be used to

estimate the numbers of small unobserved COTS. In

addition, there is a need to convert the COTS density

estimates to CPUE (Catch-Per-Unit-Effort or COTS culled

per dive minute) measures so that they can be directly

applied by control teams in the field. Hence, we derive

relationships between different COTS density measure-

ments estimated through common COTS survey techniques

(i.e. manta tow, transect surveys) and CPUE as recorded by

divers undertaking culling operations (Fig. 1).

Methods

COTS-coral model

The equilibrium (static) analysis to compute equilibrium

COTS-coral interaction solutions is based on a MICE

describing the interaction between COTS and two groups

of coral (Morello et al., 2014). The full equations, list of

variables and parameter estimates and input values are as

per Morello et al. (2014) and are given in Online Resource

Fig. 1 Summary of process used to convert between actual and modeled number of COTS, using field data from SCUBA counts, manta tow

counts and COTS control program culling CPUE (COTS/min), showing parameter definitions as in Table 2
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1 (Tables S1-S3). In line with MICE principles (Plagányi

et al. 2014a), the model constrains complexity by restrict-

ing focus to two aggregated groups of corals—fast-growing

corals (Acropora spp.), and massive slow-growing corals

(e.g. Faviidae, massive Porites spp. etc.) and how COTS

interact with them (Online Resource 1: Table S1). The

model was fitted to manta tow and scuba transect survey

data from Lizard Island (Queensland, Australia), collected

by the AIMS LTMP from 1994 to 2011 for both COTS and

coral cover (Sweatman et al. 2008).

The coral dynamics are described using logistic popu-

lation models. Consequently, they assume that the popu-

lation rate of change depends on the biomass. COTS

preferentially feed on the fast-growing coral species and

switch to consuming the slower-growing massive corals

only when these corals occur in relatively high densities

and/or when fast-growing corals have been depleted

(Birkeland and Lucas 1990). In the model, COTS therefore

start by consuming fast-growing corals and increasingly

supplement their diet with slow-growing corals as the

density of fast-growing coral declines (Online Resource 1:

Table S1). The two coral categories have different growth

rates as well as different rates of consumption by COTS

(Online Resource 1: Tables S1, S4). To assess the robust-

ness of model results to different coral growth rates, we

include in our results two sensitivity analyses that assume

higher and lower fast-growing coral growth rates (Online

Resource 1: Table S4).

COTS populations were modelled through an age-

structured approach. Here individuals belong to one of

three age classes—0, 1 or 2? (Table 1)—where the oldest

class is an absorbing state. Parameters relating to COTS

recruitment, mortality and their inter-specific interactions

with coral were estimated. The number of age-0 COTS (or

‘‘recruits’’—COTS in their first year of life) can be mod-

elled as self-recruitment (based on a stock-recruitment

relationship) and immigration (the number of settling lar-

vae transported to the region from elsewhere) (Eq. 1a,

Online Resource 1: Table S1). The stock-recruitment

relationship is a statistical description of the average of

several biological processes such as competition and den-

sity dependence (Hilborn and Walters 2001). It is a useful

formulation for capturing changes in self-recruitment rates

as a function of changes in density. Total recruitment also

accounted for the density-independent phenomenon of

immigration, with the magnitude of an immigration pulse

estimated by fitting to available data (i.e. the observed

increase in recruitment was estimated as a combined effect

of density-dependent and density-independent processes).

The model-estimated natural mortality rate of 2.6 y-1

(with associated Hessian-based confidence interval

2.3–2.8 y-1) is high but not unexpected given that it is

estimated as the average rate (and thus accounts for the

relatively higher rate expected for younger age classes) and

is also an integrated parameter to account implicitly for all

sources of natural mortality. The latter could include

pathogenesis which may increase in response to prey

depletion and deteriorating condition of adult starfish

(Pratchett et al. 2017). The representation of inter-specific

interactions involves adding a multiplier for survival or

breeding success based on the relative depletion of the

prey.

The robustness of the COTS-coral model formulation

and parameter estimates is demonstrable through the work

of Condie et al. (2018). Here, the MICE model and asso-

ciated parameter estimates have been embedded in the

CoCoNet model (Condie et al. 2018) which resolved a

large network of individual reefs and was able to suc-

cessfully simulate realistic successive COTS population

outbreaks as an emergent property of the model.

Equilibrium COTS-coral equations

The fast-growing coral equation from Online Resource 1:

Table S1 can be rearranged and solved for the case of zero

change in coral biomass (cover) as follows (where variable

definitions are listed in Online Resource 1: Table S2):

rf Cf
1ð1� Cf

1=Kf Þ ¼ 1� qy
� � pf1ðN1;1 þ N1;2ÞCf

1

1þ exp �ðN1;1 þ N1;2Þ=pf2
� �

ð1Þ

where Cf
1;N1;1;N1;2 denote equilibrium fast-growing

coral cover, number of age-1 and number of age 2? yr

COTS, respectively, and Kf is the fast-growing coral car-

rying capacity.

Substituting for qy, this simplifies to:

rf ð1� Cf
1=Kf Þ

eð�5Cf
1=Kf Þ

¼ pf1ðN1;1 þ N1;2Þ
1þ exp �ðN1;1 þ N1;2Þ=pf2

� � ð2Þ

Table 1 Age-size-life-stage

equivalence assumed for COTS

in this study and in the MICE

model (Morello et al. 2014),

based on Pratchett (2005, 2010)

and Pratchett et al. (2014)

Age Size (diameter, mm) Stage Age class used in MICE model

11? d 0.5 Newly settled juvenile

0.5–6 months 1–10 Algal feeding juvenile Age 0

0.5–2 yrs 10–150 Coral-feeding juv. to sub-adult Age 1

[ 2 yrs [ 150–350 Coral-feeding adult Age 2?

1486 Coral Reefs (2020) 39:1483–1499
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where rf = 0.5 (input); pf1 = 0.129 (std 0.041) (estimated

within the model—Morello et al. (2014)) pf2 = 10 (fixed

input).

For different values of coral depletion (Cf
1
�
Kf ), a

Newton–Raphson root-finding method is then used to solve

for the number of COTS aged 1 yr and older ðN1;1 þ
N1;2Þ that keeps the coral in equilibrium at a pre-specified

level. The age 2? yrs group includes all COTS aged 2 yrs

and older, and is related to the abundance of age-1 indi-

viduals via:

N1;2 ¼
N1;1 e

�M

1� e�M
ð3Þ

The total number of COTS is N1 ¼ N1;1 þ N1;2 and this

can be further separated into the number of age 1 and

2? COTS using the relation:

N1;2 ¼ e�MN1 ð4Þ

N1;1 ¼ N1 � N1;2 ð5Þ

where the best-fit estimate of natural mortality M is

2.56 y-1 (with Hessian-based standard error 0.15). A lower

estimate of M of 1.708 y-1 (SD = 0.28) from Plagányi

et al. (2014b) is also used as a sensitivity (Table 2).

Similarly, for the slow-growing coral, the following

equation can be used to solve for the number of COTS that

keeps the coral cover in equilibrium, except that this is

simultaneously a function of the depletion level of the fast-

growing coral (because of the switch function – Eq. 7 in

Online Resource 1: Table S1):

rm

pm1

ð1� Cm
1=KmÞ

ð1þ e�5Cf
1=Kf Þ

¼ ðN1;1 þ N1;2Þ
1þ exp �ðN1;1 þ N1;2Þ=pm2

� � ð6Þ

The number of COTS that keep slow-growing coral in

equilibrium is therefore solved for a range of different

steady state fast-growing coral depletion levels.

Converting modelled COTS numbers to equivalent

densities seen by divers

The model numbers of 2? yr COTS are fitted to data from

manta tows (COTS � manta tow-1), and a survey propor-

tionality parameter u is estimated in the model. The model

assumes no age-1 COTS are observed by manta tows as

very few small COTS are recorded (Miller et al. 2009).

Manta tows involve towing an observer behind a tender

vessel at a constant speed for 2 min, which covers

approximately 200 m of reef habitat (Moran and De’ath

1992; Miller et al. 2009; Vanhatalo et al. 2016). The towed

observer counts all COTS visible within a 10 m search

width along the tow path suggesting each manta tow survey

covers an area (A) of approximately 0.2 ha. Manta tows are

designed to estimate relative abundance rather than abso-

lute abundance as the latter is complicated by the cryptic

nature of COTS and hence availability bias (Fernandes

et al. 1990; Moran and De’ath 1992).

Another common method for estimating COTS abun-

dance in the field is through SCUBA transects involving

divers systematically searching along a transect with pre-

specified length and width. Although manta tows are useful

for quickly collecting information on relative COTS

numbers across a broad spatial scale, SCUBA transect

observations are more accurate at estimating COTS num-

bers because when on SCUBA, observers have the

opportunity to search for smaller and more cryptic indi-

viduals (Fernandes et al. 1990). Hence the COTS densities

recorded using manta tow surveys (termed the sightability

s) are substantially lower than SCUBA observations, for

which we define detectability of 2? yr COTS as a and 1-yr

COTS as b, noting that most GBR SCUBA transect

observations in the literature have zero detectability of

1-yr-old starfish (i.e.\ 15 cm). Comparisons between

manta-towed and SCUBA transect (20 m x 10 m) obser-

vations suggest that fewer COTS are counted on manta

Table 2 Parameter values used for base threshold calculations as well as a number of sensitivity tests

Parameter description Symbol Method 1 Method 2 Sensitivity 2 Sensitivity 3 Sensitivity 4 Sensitivity 5

Manta tow area (ha) A 0.22 0.2 0.2 0.2 0.2 0.15

Model-estimated COTS mortality rate (yr-1) M 2.563 2.56 2.56 2.56 1.768 2.56

Model survey parameter u 0.9463 0.946 0.946 0.946 1.2768 0.946

Manta tow sightability (2? COTS) s – 0.235 0.456 – – 0.45

Culling detection 2? ([ 15 cm) a 0.824 0.82 0.82 0.82 0.82 0.82

Culling detection 1-yr-old (\ 15 cm) b 0.191 0.19 0.19 0.347 0.19 0.34

CPUE hyper-stability parameter h 0.51 0.5 0.5 0.5 0.5 0.5

CPUE-density scalar q 0.6691 0.669 0.669 0.669 0.669 0.669

Bold text indicates the main change from the Method 1 scenario

Source: 1-this study; 2- Miller et al. 2009; 3-Morello et al. (2014); 4-MacNeil et al. (2016); 5-Fernandes et al. (1990); 6-Fernandes (1990);

7-Updated 1 ? detection (Online Resource Table S5); 8- Plagányi et al. (2014a)

Coral Reefs (2020) 39:1483–1499 1487
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tows, such that the so-called sightability s is less than 23%

on average (Fernandes et al. 1990). However, sightability is

maximised at search widths of 9 m (s = 45%), improves at

higher densities and bias can be mitigated using other

indices such as feeding scars (Fernandes 1990). Here we

assume the COTS control program cull divers have a

similar detectability bias (a) to SCUBA transect divers and

compute their detectability (b) of small COTS based on

available data.

A mark-recapture type field study to estimate

detectability suggested that a for adult COTS (equivalent to

2? yr COTS described in this study) was 82% [with 95%

uncertainty interval 77–87%] (MacNeil et al. 2016). No

comparison is available for the 1-yr-old detectability as

smaller COTS were not observed in the MacNeil et al.

(2016) study.

Below follows a summary of the two methods used to

convert model-estimated COTS densities to manta versus

SCUBA transect densities and hence to the densities

encountered by cull divers and their associated CPUE

(Table 2). Two methods for converting starfish densities to

those encountered during cull dives are included to

encapsulate potential alternative structures of the conver-

sion relationship. We use model estimates (Eqs. 4 and 5) of

the actual abundance scaled to units of COTS per hectare

(cull program outputs are expressed in terms of COTS/ha),

and assuming the population is in equilibrium so that we

can compute the relative proportions of 1-yr and more than

2-yr-old COTS, denoted here as N1 and N2, respectively.

1. Method 1 applies the 2? yr detectability estimate a
from MacNeil et al. (2016) to convert modelled starfish

numbers (actual per hectare) to SCUBA observed

densities and assumes that CULLING 2? yr observed

densities are the same as the SCUBA transect densi-

ties:

Ncull
2 ¼ a � N2 ð7Þ

2. Method 2 is an alternative that uses the relationship of

Moran and De’ath (1992) to directly convert manta

tow observed densities (MC) to SCUBA transect (SC)

observed densities (see also Haywood et al. 2019). To

obtain manta tow densities from modelled starfish

numbers, as well as the model scaling parameter

estimate u, manta tows are assumed to cover an area

(A) with s sightability of 2? yr COTS:

MC ¼ s � u � N2 ð8Þ

From which SCUBA observed densities are calculated

(Haywood et al. 2019):

ffiffiffiffiffiffi
SC

3
p

¼ 0:8071þ 1:2008�MC3 ð9Þ

Again, assuming that the culling program 2? yr

observed densities of 2? yr COTS are the same as the

SC densities consequently yields:

Ncull
2 ¼ a � SC=A ð10Þ

3. The contribution of 1-yr COTS to total culling

numbers (1-yr and 2? yr COTS) is calculated via the

detectability of 1-yr COTS based on the culling data

(data as described below), and hence total numbers as

follows:

Ncull ¼ bN1 þ Ncull
2 ð11Þ

4. A relationship is established between COTS density

and CPUE (see below) in order to convert culling

density observations to CPUE with units of (Ncull

COTS)/min which is the measure that is most directly

comparable to field CPUE measures (i.e. it accounts

for the size distribution of COTS removed in the field).

Alternative sensitivity analysis parameter values used in

calculations are shown in Table 2.

Comparing model results and COTS control

program data

We used the COTS control program size structure data col-

lected during culling to compute an average size structure, in

turn roughly converted to an age distribution. We compared

this distribution to the model-derived expected distribution of

COTS actually present in the field (assuming stable growth),

with culling data. The cull data includes specification of size

classes as follows:\15 cm (age 1); 15–25 cm (age 2?);

25–40 cm (age 2?) and[40 cm (age 2?).

These sizes correspond to the age classes in Table 1

which are based on Pratchett (2005, 2010) and Pratchett

et al. (2014). Thus, to apply an age-size split, we assume

the categories\ 15 cm to COTS that are less than 2 yrs

old, whereas the three larger categories correspond to age

2? yr COTS. Small COTS individuals can be cryptic, so it

was determined that COTS less than 10 cm were more

difficult to find. Given the lower size category extends

to\ 15 cm we would like to know the relative proportions

of 1-yr-old and 2? yr COTS culled as part of the control

program (Fig. 1). We therefore summed all the length

frequency data from removals during 2012–2014 from all

reefs and computed the average size (and age) distribution

as shown in Fig. 2 and Online Resource 1: Table S5. COTS

control program divers likely cull most 2? yr COTS, but

the proportion of the 1-yr COTS culled is not known hence

we defined a detectability proportion b for this age class.

1488 Coral Reefs (2020) 39:1483–1499
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Based on an estimate of natural mortality, we can use

Eq. 3 above to predict the number of 2? yr COTS corre-

sponding to any number of 1-yr-old COTS and hence what

the average COTS age distribution should be. We substi-

tuted our base-case estimate (M = 2.56 y-1) as well as two

sensitivities (M = 1.708 y-1; M = 1.461 y-1; Plagányi

et al. 2014b). This suggests that the expected relative

percentage of 1-yr-olds compared to 2? yrs COTS ranges

from 77% to 92% (Online Resource 1: Table S5). But the

proportion of 1-yr COTS culled is only 14.4% of total

observed numbers (over 2012–2014). This low percentage

is because as expected, divers will ‘‘miss’’ many 1-yr aged

COTS. Accordingly, we derived an estimate of the

detectability of the 1-yr-old COTS by calculating what

percentage of the expected 1-yr-olds are observed, i.e. b ¼
14:4=77 which gives b = 19% (or using a higher expected

percentage of 92%, this gives b = 16%). We used b = 19%

as our base-case detectability estimate but also did an

additional sensitivity test as below.

At the time of the initial analysis to provide guidance for

management, COTS control program size structure data

were available for the period 2012–2014 and were used to

compute an average size structure, in turn roughly converted

to an age distribution (Fig. 2). A more recent analysis using

updated control program data for the period 2013 to 2017

from a subset of reefs (Online Resource 1: Table S5) indi-

cated a higher percentage (26.9%) of 1-yr-old COTS being

killed. Substituting as above (i.e. b ¼ 26:9=77) suggested a

higher detectability estimate of 1-yr COTS (b = 34%)

(Fig. 2), possibly because of the efficient prior culling of

larger COTS and also potentially improved skills in the

detection of small COTS. Given the challenges in estimating

detectability, we used both our high (b = 34%) and low

(b = 19%) estimates in our analyses.

Fig. 2 (a) Summary of the size

distribution of COTS culled

based on COTS control program

data available when the first

model was constructed (2012-

2014) compared with a

sensitivity using updated data

for the full period (2013-2017),

and (b) conversion to relative

age proportions for comparison

with model-derived age

distribution representing

theoretical ‘‘true’’ distribution in

the field
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CPUE-COTS relationship

The relationship between CPUE (measured as COTS culled

per minute) and COTS density is unlikely to be linear as

searching and handling time constraints will mean that at

high COTS densities, there is an upper limit to the number

of COTS that can be culled per unit time. Hence it is more

likely that the relationship is a hyper-stable one, supported

also by the fact that a hyper-stability relationship is the

most common form of relationship used in fisheries to

describe non-proportionality between CPUE and abun-

dance in cases where CPUE remains high while abundance

declines (Harley et al. 2001).

The relationship between COTS culled and total COTS

density was assumed to be:

CPUEt ¼ qðNcull
t Þh ð12Þ

where CPUEt is the number of adult COTS culled per unit

of effort at time t, q is the catchability coefficient (the

proportion of the total COTS population culled using the

removal method in question), Ncull
t in this application

represents the COTS population ([ 11 cm) at time t in the

water as counted by Fisk and Power (1999) (see below),

and h is the hyper-stability coefficient determining the

shape of the relationship (note that h = 1 implies a linear

relationship, h = 0 no relationship).

In order to fit the above equation to available data, we

developed a model in AD Model builder (Fournier et al.

2012) and its estimation routines were used to estimate the

parameters of this relationship and compute Hessian-based

standard error estimates to assess the precision with which

the parameters are estimated. The model was run using

fixed values of h and estimating q, as well as attempting to

estimate both q and h.

The model was fitted to culling data collected by Fisk and

Power (1999). They comprise catch per unit effort (COTS

removed�h-1) and COTS density estimates (COTS�ha-1).

These data were collected from two small reefs around

Lizard Island between October 1995 and August 1996 and

each reef was visited weekly for the first 10 weeks and then

every 2 weeks for the following 20 weeks. The culling

method involved injections of sodium bisulphate, which

requires 10–20 injections per starfish to be effective. On

each visit the injection effort was a standard of 2 person

hours. COTS densities were estimated every four months

(four times within the period) by 50x5m belt transects,

before COTS were removed and hence only eight data

points are available for the calibration. Because the culling

method used in Fisk and Power (1999) required 10–20

injections per starfish it was less efficient than the single-

shot injection of oxbile currently used in the COTS control

program. Consequently, the CPUE estimates from Fisk and

Power (1999) are likely to be lower than the current CPUE

values, but the bias is a conservative one as aiming for a

lower CPUE increases the chances of COTS being suffi-

ciently reduced to allow coral growth.

We also considered results from a study by MacNeil

et al. (2016) which were not available at the time of the

initial analyses. They found a hyper-stable relationship

between CPUE and known density based on mark-recap-

ture methods and estimated a hyper-stability parameter of

0.33 [confidence interval: 0.21, 0.46] (MacNeil et al.

2016). However, they focused only on larger COTS plus

recorded densities were substantially higher (starting from

250 large COTS/ha) than those being considered for

analysis of low threshold levels, and we were unable to

successfully extrapolate their results to the scale needed.

Applying the CPUE-COTS relationship to model

results

Using the best-fit model (h = 0.5), the CPUE-COTS rela-

tionship was used to translate COTS biomass into CPUE in

the same units as used operationally by vessels in the COTS

control program, i.e. total COTS/min. As the proportion

of\15 cm COTS recorded in the culling data has changed

over time (Fig. 2), density and comparable COTS numbers

are also presented in terms of numbers of 2? yrs COTS only.

Results

COTS-equilibrium coral relationship

The point at which COTS consumption of coral outstrips

coral growth is key to the ecology and management of the

relationship between COTS and corals on coral reefs.

Figure 3 shows the number of COTS (2? yrs COTS�ha-1)

that equilibrate (A) fast-growing (Coralf) and (B) slow-

growing (Coralm) coral growth for coral cover at a range

of levels as shown. Values for COTS at levels below the

curves are sub-outbreak densities, that is the rate of con-

sumption of corals by COTS is below the net growth rate of

the coral assemblages. Model results are compared with the

outbreak threshold (10 COTS�ha-1; COTS[ 20 cm i.e.

2? yr COTS) defined by Keesing and Lucas (1992) for

cover of fast-growing coral (Coralf) in the range 20% to

50%, and there is excellent agreement between the results

across this range of coral cover (Fig. 3a). The number of

COTS required to cause a net reduction in coral cover

declines near minimum and maximum values because coral

cover is constrained by the 0 and 100% bounds. In this

context coral assemblages with approximately 80% cover

of fast-growing coral shows the greatest resistance to

COTS impact on net cover (Fig. 3a).
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The Coralf base growth rate is much larger than that of

Coralm. Hence, although both groups are modelled simi-

larly, changes in the density-dependent growth rate of the

fast-growing corals is better able to offset starfish con-

sumption. This contrasts with the slow-growing corals

where their slower growth is easily dominated by starfish

consumption across its range of abundance. Additionally,

as the abundance of preferred fast-growing corals declines

and/or the abundance of slow-growing corals increases,

starfish increasingly supplement their diet with slow-

growing corals. This is such that the starfish population that

equilibrates slow-growing coral growth is monotonically

Fig. 3 COTS density (2? yr

COTS�ha-1) encountered by

COTS control program cull

divers, that model results

suggest keeps coral in

equilibrium for (a) fast-growing

coral for a number of model

sensitivity runs (Table 2) and

compared with the outbreak

threshold (10 COTS ha-1)

defined by Keesing and Lucas

(1992) for coral cover of 20% to

50% and (b) slow-growing coral

stabilising at the specified levels

when fast-growing coral is held

constant at 20% and 50% coral

cover. See Table 2 for summary

of methods used
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and inversely related to its abundance where the average

slope of the relationship is determined by the abundance of

fast-growing corals. Hence fewer fast-growing corals lead

to flatter curves (Fig. 3b)—fewer COTS will equilibrate

slow-growing coral growth.

The number of COTS is shown in units of both numbers

of large age 2? yr COTS�ha-1 as well as the total number

of 1-yr and 2? yr COTS�ha-1 (Table 4). The conversions

between different field observations (assuming the true

underlying abundance is known) highlights the scale of the

problem because the actual numbers can be more than an

order of magnitude larger and include a lot of small COTS

that will remain undetected during a single culling opera-

tion. In addition, assessments of COTS population structure

are confounded by movement of COTS and variable indi-

vidual somatic growth rates (and sex ratios), but these

factors are beyond the scope of the current analysis. The

2? yr and total COTS densities are converted to CPUE

rates (Table 4). The results of a number of sensitivities

using alternative parameter settings are also shown

alongside.

CPUE-COTS density relationship

The catchability parameter q of the CPUE-COTS rela-

tionships was estimated with good precision (Table 3).

This only applied to hyper-stability values h between 0.5

and 1.0; at values of h lower than 0.5, the estimated values

of q were impossible ([ 1.0). The likelihoods computed for

each alternative model measure the probability of the data

given the parameter estimates, and therefore comparisons

of likelihoods can be used to select the model which fits the

data best statistically. The best model fit and hence rela-

tionship is described by h = 0.5 (denoted with * in

Table 3). The CPUE trajectory using the best-fit value is

illustrated in Fig. 4.

Comparing model results and field data

We use as the reference CPUE the measure that is most

directly comparable to field CPUE measures (Table 4).

This estimate accounts for the size distribution of COTS

removed in the field using the hyper-stability relationship

(Eq. 9) and accounting for differing detectability of 1-yr

and 2? yr COTS. These measures are used to produce a

plot of the COTS CPUE (comparable to field CPUE esti-

mates) that restricts the fast-growing coral cover at a zero-

growth rate level for coral cover across a range of levels as

shown in Fig. 5 (with values shown in Table 4).

For coral cover in the range 20–40%, and considering

the sensitivity analyses, these results suggest that the COTS

CPUE should be below approximately 0.04–0.06 COTS/

min to maintain existing coral cover and promote recovery.

Figure 5 also shows the average coral cover from all 87

reefs that formed part of the COTS management program

in 2012–2014 was 35% (Online Resource 1: Table S6),

within the range described above.

To illustrate the rate at which coral cover can be

expected to vary under different scenarios, we plotted the

percentage change (per year) in fast-growing coral cover

for CPUE (COTS/min) rates and coral cover percentages

(Fig. 6). This shows that if culling continues until the

CPUE is reduced below the threshold values, what the

expected rate of coral recovery might be, compared with

expected declines in coral cover when CPUE (and hence

the underlying numbers of COTS grazing on coral) is

above the threshold value (Fig. 6). The plots show the

relative gradients where rapid changes in coral cover can

be expected. This highlights where improvements in coral

cover are likely to be greatest when reducing COTS

numbers—for example, at low coral cover, the same

change in CPUE has a bigger impact than at higher coral

cover, and coral cover declines more quickly as CPUE is

increased than it is able to recover in response to decreases

in CPUE (Fig. 6).

Sensitivity analyses and validation of results

The two alternative methods used to convert between dif-

ferent density estimates yielded similar results. In addition,

a number of sensitivity tests were run to evaluate the effect

on results of alternative parameter settings given there is

considerable uncertainty regarding bias correction factors

for sightability and detectability. Sensitivity to the form of

the CPUE-density relationship could be tested in the future

as more cross-calibration data become available. The list of

key sensitivity scenarios is shown in Table 2 and results

compared in Fig. 5. In addition, we tested the sensitivity of

results when assuming both a faster (rf = 0.6) and slower

(rf = 0.4) fast-growing coral growth rate (compared with

Table 3 Estimates of q at different fixed values of h to different

values, including the asymptotic standard errors (SD), coefficients of

variation (CV) and likelihood values (calculated as the sum of

squares)

h q SD CV Likelihood

0.5 0.669 0.011 0.016 322.87*

0.6 0.374 0.006 0.016 346.35

0.7 0.206 0.003 0.016 383.15

0.8 0.112 0.002 0.016 428.26

0.9 0.061 0.001 0.016 477.61

1.0 0.033 0.001 0.017 528.13

*Denotes the best relationship
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the base-case value of rf = 0.5) and we found that model

results were fairly robust to changes in this parameter, with

only a slight increase and decrease, respectively, evident in

the CPUE versus coral cover relationship (Online resource

1: Fig. S1).

Analysis of the COTS control program data from all

reefs culled over 2012–2014 supports that COTS were

outbreaking in high numbers across a number of reefs, with

many very high ([ 0.5 COTS/min) CPUE records, as well

as evidence of the control program successfully reducing

CPUE below the threshold levels of around 0.05 COTS/

min derived in these analyses (Online resource 1: Fig. S2).

Discussion

This study highlights how existing data sets can be used in

combination with quantitative modelling approaches to

derive population thresholds for use in pest management

and ecosystem-based management applications. For fast-

growing coral, there is a point at which the balance

between the rate of growth of coral and the removal

through grazing by COTS moves from net growth to net

decline. The model steady-state analysis suggests that if

coral cover is higher, then the same number of COTS will

have less impact on the system than for lower levels of

coral cover (Fig. 3). Hence, at higher coral cover levels, net

growth in coral cover remains constant when there are

more COTS present than is the case at lower coral cover

levels: for example, if the coral cover is 80%, then the

model suggests that as many as 14 COTS�ha-1 (2? yr

COTS) could be detectable on a reef without causing a

further decline in the coral cover, compared with 4

COTS�ha-1 when the coral cover is 20%. This provides a

basis for enabling management programs to make opera-

tional estimates of COTS CPUE target levels at reefs with a

range of coral cover. However, at high levels of coral cover

it may still be desirable to reduce COTS densities well

below the cover-specific outbreak level thresholds, partic-

ularly where this may be at or above threshold levels of

fertilisation success or zygote production (Rogers et al.

2017). This may have the benefit of inhibiting the forma-

tion of a secondary outbreak and would need to be a factor

in prioritization and triage around a regional COTS man-

agement program, as highlighted by network modelling of

COTS metapopulation dynamics (Hock et al. 2016).

Although it is challenging to manage outbreaks, ongoing

research to improve efforts to manage COTS is important

because other major causes of coral loss, such as climate-

induced bleaching, are less amenable to direct interven-

tions (Pratchett et al. 2017).

In order to validate results using empirical information,

we compared our model results with the outbreak threshold

(10 COTS�ha-1) defined by Keesing and Lucas (1992)

which was derived independently based on data for reefs

having a coral cover ranging between 20% and 50%

(Fig. 3). This cover also aligns closely with the average

coral cover recorded on reefs that were being managed by

the COTS control program from 2012 to 2014. Our model

results compare well with these empirical estimates, sug-

gesting outbreak thresholds are in the range 3–8 adult

COTS�ha-1 (Fig. 3). More recently, MacNeil et al. (2016)

inter-calibrated multiple data sources and estimated that

COTS densities in the Cairns sector of the GBR averaged

44 adults COTS�ha-1 in 2014. They estimated densities in

excess of 62 COTS�ha-1 in northerly (outbreaking) reefs

compared with densities below 12 COTS�ha-1 for south-

erly reefs, which they noted were mostly non-outbreaking,

Fig. 4 Catch per unit effort

(COTS/min) against COTS

density (COTS�ha-1) shown

when using the best-fit

hyperstability parameter of

h = 0.5, compared with

alternative values of h (see also

Table 3)
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which is consistent with the COTS densities estimated in

this study (Table 4). In some instances, outbreak densities

can be exceedingly high ([ 1000 COTS�ha-1) throughout

the Indo-West Pacific reefs (Pratchett et al. 2017), for

example a survey of a recent outbreak on a Republic of

Maldives reef observed an average density of 362

COTS�ha-1 (Saponari et al. 2018).

The dome shape of the curve in Fig. 3A is similar to a

sustainable yield curve as classically used in fisheries

management, and is shifted to the right because of the high

growth rate of fast-growing coral (Coralf). We modelled

coral growth using a logistic type growth curve (Schaefer

model) so the turnover rate is fastest at intermediate pop-

ulation levels (in this case intermediate coral cover) which

is why the largest number of COTS can be sustained at

those levels (i.e. we calculated the equilibrium balance

between the number of COTS and coral cover so the COTS

are eating surplus production at those levels, but not

dropping the total coral cover further). The sensitivity to

alternative assumed coral growth rates can be readily

investigated.

The pattern above contrasts with the shape estimated for

slow-growing coral (Coralm), because the latter has a

much slower rate of growth and hence the production curve

is expected to take a different shape. But this is also

complicated further by the interaction between the two

coral species and COTS switching between them. The

COTS are assumed to switch to feeding on slow-growing

corals once the fast-growing corals become heavily

depleted (Moran 1986). At high Coralf levels, there might

be less Coralm and so COTS may focus less on them, but

when there are lots of COTS and Coralf is held constant,

they will focus on Coralm, which complicates the overall

dynamics. Figure 3B suggests that if the fast-growing coral

are more heavily depleted, the COTS will increasingly

supplement on slow-growing coral and hence relatively

fewer COTS will result in a decline of the slow-growing

coral below a pre-specified depletion level. Figure 3B also

shows that holding Coralf at a higher level means more

COTS can be supported on the reef, noting the result shows

the number of COTS in equilibrium with the joint Coralf

and Coralm biomass levels which are related. Sensitivity to

alternative growth rates of slow-growing coral can simi-

larly be readily investigated.

Alternative growth scenarios for both fast and slow-

growing corals might include varying rates of impacts such

as cyclone damage and coral bleaching (Condie et al.

2018). In the context of coral reef resilience, it is significant

to note that the fast-growing coral species preferred by

COTS are also broadly speaking those most susceptible to

bleaching (Keesing et al. 2019). Given limited data, our

model used a simple categorisation of coral into fast-

growing and slow-growing groups, but future work could

advance our efforts through better representation of coral

species composition and spatial distribution. Indeed, pre-

vious work has demonstrated that although they show a

preference for acroporid and pocilloporid corals (Keesing

et al. 2019), there are many factors (e.g. nutritional content,

Fig. 5 Model-derived

relationship between CPUE

(COTS/min) and equilibrium

fast-growing coral cover

proportion. The average

observed coral cover recorded

in the COTS control program

2012-2014 database is shown as

part of a shaded box that

includes one standard deviation

on either side and which also

encompasses the range of likely

CPUE rates that correspond to

the ecological threshold. The

vertical axis units are those

which correspond most closely

to the units of the CPUE

measures recorded in the field,

namely mostly age 2? yr COTS

individuals plus a smaller

percentage (the detectability) of

the age 1? COTS removed per

minute (see text for details)
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coral defenses, coral distribution and availability) that

influence COTS feeding preferences (Pratchett et al. 2014,

Keesing et al. 2019) and hence more explicit representation

of the coral composition could be used to refine model

results.

Our study used both field observations and model pre-

dictions to estimate detectability of the 1-yr COTS (those

we classified as younger than 2 yrs) by cull divers at 19%,

with a sensitivity analysis suggesting that the relative

proportion (or detectability) of small COTS may have

increased over time (Table 2; Table S5). The likely low

detectability of smaller COTS highlights the need for fre-

quent revisits by field control teams to effectively reduce

the numbers of COTS. We used results from a mark-re-

capture type field study (MacNeil et al. 2016) that found

the detectability of adult COTS (equivalent to 2? yr COTS

described in this study) was high at 82% [with 95%

uncertainty interval 77-87%]. No comparison is available

for the 1-yr detectability as smaller COTS were not

observed in the MacNeil et al. (2016) study, but these

authors note that detectability declines substantially with

decreasing size, and other factors also influence

detectability, namely site and time of day. Indeed, a study

of COTS around Moorea, French Polynesia, estimated 27%

higher COTS densities at night compared to during the day,

underscoring the need to account for detection bias in

surveys and control programs (Kayal et al. 2017).

Through statistically fitting to data collected at Lizard

Island by Fisk and Power (1999) we developed a CPUE-

COTS density equation that can be used to convert between

Fig. 6 Model-derived expected percentage change (per year) in fast-

growing coral cover for CPUE (COTS/min) rates and coral cover

percentages as shown. Increases or decreases in coral cover are due to

the differences between COTS grazing versus coral growth rates,

where the zero isocline represents the equilibrium when COTS

densities and coral cover are balanced and coral cover thus does not

decrease below the corresponding COTS densities. Selected examples

are shown for alternative parameterisations as detailed in Table 2 and

as follows from top left to bottom right: Method1, Method2,

Sensitivity 3 and Sensitivity 5
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estimates of COTS density and field observations of the

numbers of COTS monitored by manta tow methods,

observed by SCUBA divers on transects or culled per unit

time (Fig. 1). CPUE data can provide an index of the rel-

ative abundance of COTS in the field, but relating this

directly to the underlying abundance or density of the

population is confounded by the fact that this relationship

is seldom linear, and factors such as handling time mean

that a hyper-stable relationship (i.e. the CPUE values start

converging to some asymptotic value at high COTS den-

sities) is more likely (Fig. 4). Although based on relatively

few data, the hyper-stable CPUE-COTS density relation-

ship we derived is similar to that estimated by MacNeil

et al. (2016) using a different data set. The hyper-

stable formulation captures that when COTS density is

reduced, CPUE is higher than predicted from a linear

relationship as might be the case, for example, if COTS are

aggregated on remaining live coral patches. Explicit rep-

resentation of more complex relationships such as due to

the distribution and composition of coral communities is

beyond the scope of this study, but would be worthwhile

investigating further (see also Pratchett et al. 2017).

We computed CPUE statistics that took into account the

detectability of large and small-sized COTS in the field,

and hence in units that are most directly comparable to

field CPUE measures (i.e. it accounts for the size distri-

bution of COTS removed in the field). The threshold COTS

CPUE values are intended as reference levels describing

the levels, for coral cover across a range of levels as shown

in Fig. 5, below which COTS populations should be

reduced in order to prevent further declines in the fast-

growing coral cover. For coral cover in the range 20–40%,

these preliminary results suggest that the COTS CPUE

should be maintained below approximately 0.04–0.07

COTS/min to keep the coral cover stable at its current

level. The average (±STD) coral cover at the time of these

analyses was 35% (±17%) with range 3–88% (Online

Resource 1: Table S6). This suggests that on average,

CPUE target rates should be less than 0.05 COTS�min-1 (1

COTS per 20 min) and for low coral cover, CPUE target

rates should be lower, down to around 0.04 COTS�min-1 (1

COTS per 25 min) (Table 4).

The finding from this study that the sub-outbreak

threshold density of COTS (and hence the CPUE) is

reduced at lower coral cover, provided scientific support

for the management approach applied at the time which

recommended that efforts to cull COTS focus on achieving

a larger reduction in CPUE when coral cover is below,

rather than above 40%. The findings from this study have

also underpinned the choice of threshold level to guide

field management efforts, namely the following are adop-

ted as management targets in the expanded COTS control

program (Fletcher et al. 2020):

• 0.04 COTS�min-1 where coral cover is\ 40%

• 0.08 COTS�min-1 where coral cover is[ 40%.

Fletcher et al. (2020) also demonstrate the capacity of

the program to achieve these ecologically-informed man-

agement targets, and provide recommendations for future

refinement.

Our results were reasonably robust across a range of

sensitivity tests. For example, to maintain coral cover at

35%, the CPUE estimated values ranged from 0.03 to 0.08

(Fig. 5). The higher estimate of 0.08 COTS�min-1 (ca. 3

COTS per 40 min) derived from Sensitivity 5 and is not

surprising because this scenario assumed a greater pro-

portion (34% versus the base value of 19%) of 1-yr COTS

are successfully culled. Hence the CPUE threshold is

expected to be higher as it corresponds to an improved

detection ability relative to the base scenario. This also

underscores the disproportionate negative impact on COTS

(and conversely positive impact on coral recovery and

success of a culling program) of being able to locate and

cull younger COTS.

Some historical data, such as Fisk and Power (1999) that

we used to fit the hyper-stable CPUE-COTS relationship,

are not entirely applicable to the current situation. This is

because they used a different, less efficient, removal

method compared to those used at present, as well as the

limited spatial coverage of the removals. As a result, we

also tested sensitivity of our results by drawing on the more

recent study of MacNeil et al. (2016). Fisk and Power

(1999) presented simultaneous quantification of both

removals (CPUE) and density of COTS (including small

animals) in the water (N), and these data were therefore

more suited for the current analyses than the COTS man-

agement control data. Future data collection efforts should

be expended to collect data that can better inform the

efficiency of control efforts: this requires repeated surveys

measuring different COTS densities in situ followed by

CPUE from removals. Surveys and culling operations need

to include sampling of small COTS (\ 15 cm) and should

ideally test for sampling differences between more and less

experienced divers. Simultaneous manta tow and SCUBA

transect sampling will also be helpful in further refining

conversion factors between different methods. Finally,

simultaneous detailed sampling of coral cover and spatial

distribution will improve understanding of the dynamics of

COTS and coral populations with the goal of improving

decision-making as part of the overall COTS management

strategy on the GBR (Fletcher et al. 2020). Ongoing

technological improvements in sampling methods, such as

a digital droplet PCR method to detect environmental DNA

(eDNA), also show considerable promise in supplementing

traditional monitoring methods in the future (Uthicke et al.

2018). Improved monitoring of coral abundance, species

Coral Reefs (2020) 39:1483–1499 1497

123



www.manaraa.com

composition and recovery rates alongside COTS control

data will also lead to ongoing improvements in assessing

and managing COTS outbreaks.

Acknowledgments We extend thanks to the Great Barrier Reef

Marine Park Authority, the Queensland Government, the Association

of Marine Park Tourism Operators and all contributors to the Eye on

the Reef Program for the provision of data associated with reef health

and crown-of-thorns starfish. This work was funded by Great Barrier

Reef Marine Park Authority (GBRMPA), the Australian Govern-

ment’s National Environmental Science Program through its Tropical

Water Quality Hub and the CSIRO Oceans and Atmosphere. We

acknowledge with thanks data provided by the Australian Institute of

Marine Science (AIMS) (Long Term Monitoring Program data) and

GBRMPA. We thank the following for providing data to inform our

study: Hugh Sweatman (AIMS), Jessica Hoey (GBRMPA), Dave

Fisk, Lyle Vail (Lizard Island Research Station). Thanks to Scott

Condie and Sam Mathews for helpful critiques of previous versions of

this report.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding

author states that there is no conflict of interest.

References

Babcock RC, Milton DA, Pratchett MS (2016) Relationships between

size and reproductive output in the crown-of-thorns starfish. Mar

Biol 163:1–7
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Plagányi É, Punt A, Hillary R, Morello E, Thebaud O, Hutton T,

Pillans R, Thorson J, Fulton EA, Smith ADT, Smith F, Bayliss P,

Haywood M, Lyne V, Rothlisberg P (2014b) Multi-species

fisheries management and conservation: tactical applications

using models of intermediate complexity. Fish Fisheries 15:1–22

Pratchett M (2005) Dynamics of an outbreak population of Acan-
thaster planci at Lizard Island, northern Great Barrier Reef

(1995–1999). Coral Reefs 24:453–462

Pratchett M (2010) Changes in coral assemblages during an outbreak

of Acanthaster planci at Lizard Island, northern Great Barrier

Reef (1995–1999). Coral Reefs 29:717–725

Pratchett MS, Caballes CF, Rivera-Posada JA, Sweatman HPA (2014)

Limits to understanding and managing outbreaks of Crown-of-

Thorns Starfish (Acanthaster spp). Oceanogr Mar Biol

52:133–200

Pratchett MS, Caballes CF, Wilmes JC, Matthews S, Mellin C,

Sweatman HPA, Nadler LE, Brodie J, Thompson CA, Hoey J,

Bos AR, Byrne M, Messmer V, Fortunato SAV, Chen CCM,

Buck ACE, Babcock RC, Uthicke S (2017) Thirty Years of

Research on Crown-of-Thorns Starfish (1986–2016): Scientific

Advances and Emerging Opportunities. Diversity 9:41

Rivera-Posada J, Pratchett MS, Aguilar C, Grand A, Caballes CF

(2014) Bile salts and the single-shot lethal injection method for

killing crown-of-thorns sea stars (Acanthaster planci). Ocean

Coast Manag 102:383–390
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